Common Epigenetic Mechanism of SZ and ASD

Min-Hyuk (Raphael) Jang Mentor: Professor Igor Tsigelny Professor Valentina Kouznetsova

Overview

-This project will discover the common pathway (mechanism) of SZ and ASD

Methodology

- Gene list from DisGeNET
- -The common genes related to ASD and SZ
- -Used DAVID for analysis / Diagram
- -4 Pathways selected
 - Neuroactive ligand-receptor interaction
 - GABAergic synapse
 - Glutamatergic synapse
 - Cell adhesion molecules

Gene list

Gene	Uniprot	Gene Full Name	Protein Class	pLl	DSI v	DPI v
KDM4C	Q9H3R0	lysine demethylase 4C		6.50E-07	0.601	0.615
PCDH15	Q96QU1	protocadherin related 15		8.00E-25	0.601	0.577
OPN1MW2	P04001 P0DN77 P0DN78	opsin 1, medium wave sensitive 2		0.24	0.601	0.769
OPN1MW3	P04001 P0DN77 P0DN78	opsin 1, medium wave sensitive 3			0.601	0.769
DRD5	P21918	dopamine receptor D5	G-protein coupled receptor	1.30E-16	0.603	0.423
NOS1AP	<u>075052</u>	nitric oxide synthase 1 adaptor protein	Signaling	0.61	0.608	0.423
<u>GPHN</u>	Q9NQX3	gephyrin		1	0.608	0.538
ACTC1	P68032	actin alpha cardiac muscle 1	Cellular structure	0.74	0.61	0.538
FAN1	<u>Q9Y2M0</u>	FANCD2 and FANCI associated nuclease 1		1.70E-25	0.61	0.577
CAMK2A	Q9UQM7	calcium/calmodulin dependent protein kinase II alpha	Kinase	1	0.612	0.538
PRODH	<u>043272</u>	proline dehydrogenase 1	Enzyme	5.40E-12	0.612	0.692
RHD	<u>Q02161</u>	Rh blood group D antigen		2.90E-05	0.612	0.654
BRINP1	<u>060477</u>	BMP/retinoic acid inducible neural specific 1		0.99	0.615	0.615
JARID2	Q92833	jumonji and AT-rich interaction domain containing 2	Transcription factor	1	0.615	0.577
<u>OXT</u>	P01178	oxytocin/neurophysin I prepropeptide	Signaling	0.71	0.615	0.423
SLC38A1	<u>Q9H2H9</u>	solute carrier family 38 member 1	Transporter	0.93	0.615	0.769
EBPL	Q9BY08	EBP like	Enzyme	7.80E-05	0.615	0.577
CHRNB2	<u>P17787</u>	cholinergic receptor nicotinic beta 2 subunit	Ion channel	7.30E-04	0.617	0.308
NDUFV1	P49821	NADH:ubiquinone oxidoreductase core subunit V1		6.40E-11	0.617	0.538
1						

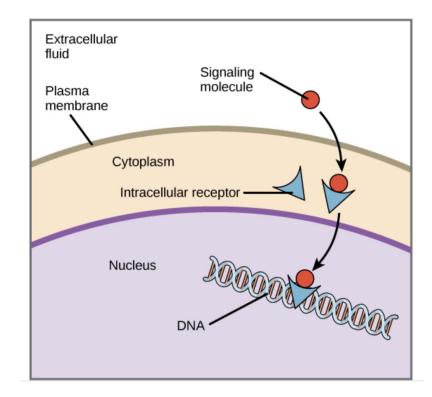
Gene list

(cont.)

PLA2G12A	Q9BZM1	phospholipase A2 group XIIA		3.80E-04	0.805	0.192
LRRN3	<u>Q9H3W5</u>	leucine rich repeat neuronal 3	Receptor	3.20E-02	0.821	0.115
LRP2BP	<u>Q9P2M1</u>	LRP2 binding protein		2.40E-06	0.821	0.269
CNTNAP5	Q8WYK1	contactin associated protein family member 5		0.99	0.821	0.154
KCTD13	<u>Q8WZ19</u>	potassium channel tetramerization domain containing 13		9.20E-04	0.821	0.154
ARHGAP32	<u>A7KAX9</u>	Rho GTPase activating protein 32		1	0.839	0.115
ERMN	<u>Q8TAM6</u>	ermin		1.20E-05	0.861	0.115
CNTNAP3	<u>Q9BZ76</u>	contactin associated protein family member 3		1.70E-11	0.861	0.192
ATP13A4	Q4VNC1	ATPase 13A4		3.30E-26	0.861	0.077
KATNAL2	<u>Q8IYT4</u>	katanin catalytic subunit A1 like 2	Cellular structure	1.20E-06	0.89	0.03

-149 Genes total (Filtered by DSIv>0.6)

-DSIv: Disease Specificity Index for the gene —>genetic and genomic analysis to measure the specificity of a gene's association with a particular disease


*Higher DSIv: the gene is specifically associated with a particular disease (or a narrow range of diseases)

*Lower DSIv: the gene may be more broadly involved in multiple diseases or biological processes

Neuroactive ligand-receptor interaction

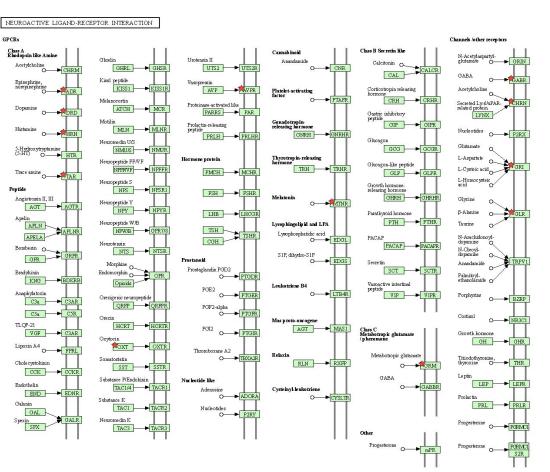
-Neuroactive ligands influence neuronal function by binding to intracellular receptors, which has the capability of binding transcription factors and regulating gene expressions.J

-Neuroactive ligand-receptor interaction is important in important Biological processes like metabolism, neurotransmission and cellular signal transduction pathways.

-ADR (aka ADRA1A):

Gene that encodes for the alpha-1A adrenergic receptor

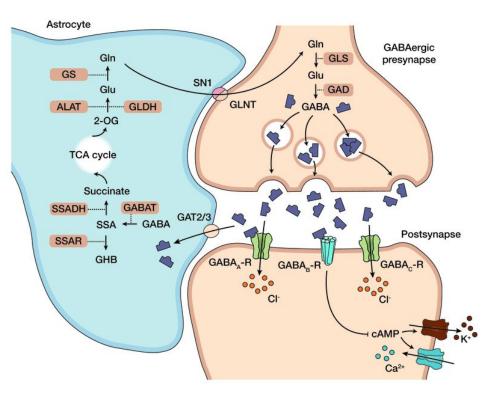
-DRD:


Gene that encode for dopamine receptors

-HRH

Genes that encode for histamine receptors

-TAR

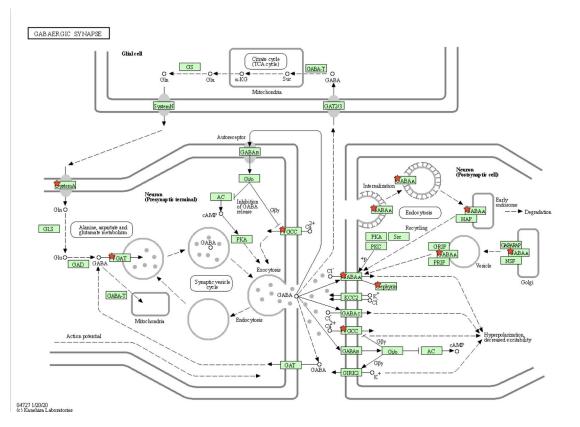

Gene that encodes the Trace amine-associated receptor 1 (TAAR1)

GABAergic synapse

-GABA: gamma-aminobutyric acid

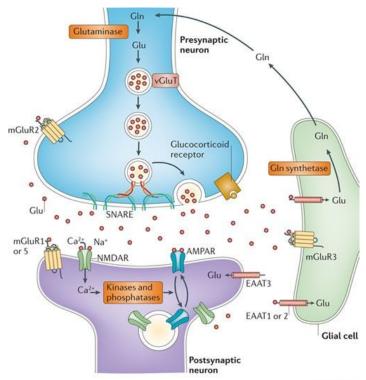
-Provides the majority of synaptic inhibition that balances glutamatergic excitatory drive and thereby controls neuronal output.

-System A


Reuptakes the neurotransmitter GABA from the synaptic cleft back into the presynaptic neuron

-VGAT

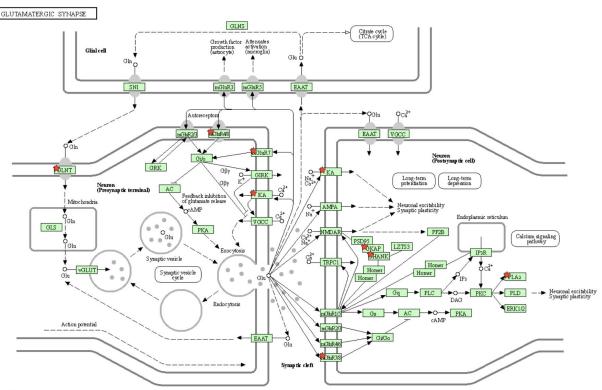
Responsible for loading GABA into synaptic vesicles in GABAergic neurons


-VGCC

Voltage-Gated Calcium Channels

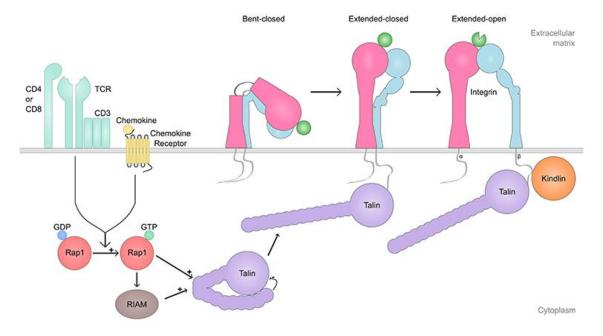
Glutamatergic synapse

-Excitatory relay stations between presynaptic nerve terminals and postsynaptic dendritic spines (axo-dendritic synapses) or adjacent nerve endings (axo-axonal synapses)


Nature Reviews | Neuroscience

-mGluR4/8, mGluR7

Members of the metabotropic glutamate receptor (mGluR) family *They play important roles in glutamatergic synapses in the central nervous system

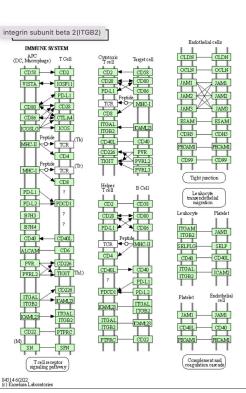

-KA

Kainate receptors. Type of ionotropic glutamate receptor and are named after the natural compound kainic acid, which selectively activates these receptors.

Cell adhesion molecules

-Cell adhesion molecules (CAMs) are (glyco)proteins expressed on the cell surface and play a critical role in a wide array of biologic processes that include hemostasis, the immune response, inflammation, embryogenesis, and development of neuronal tissue.

-NEGR1


Promote neurite outgrowth and axonal guidance during neural development, contributing to the establishment of neuronal connections.

-NGL2

involved in mediating interactions between neurons and plays a critical role in synaptic connectivity and plasticity

-b-NRXN

Interacts with various postsynaptic proteins, such as neuroligins, leucine-rich repeat transmembrane proteins (LRRTMs), and cerebellin/GluD complexes. These interactions are crucial for establishing and maintaining synaptic connections between neurons.

PVRL3

NGL3

ITGA

ITGE

ITGB

SLITRK

CNTN

Neuron

PVRL

CDH2

NCAN

PTPo

ΡΤΡδ

Neuron growth co

CNTN

LICAM

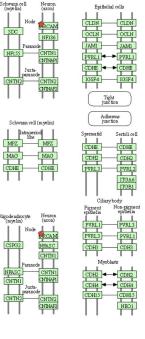
ndotheli

Leukocy

JAM

TGB

JAM3 ITGA4


ITGB1

ITGB1 ITGA4 ITGB7

Leukocyte transendothelial

migration

